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A solution of the mixed problem for an elastic strip reinforced by a semi-infi- 
nite flexible bar is obtained in closed form. The problem of the deformationof 

a rectangular plate, one of whose edges is reinforced by a bar, is reduced to a 
normal Poincark-Koch system by the method af piecewise-homogeneo~ solution. 
Particular cases of this problem, a strip reinforced by a periodic system of bars, 
by one finite, or two semi-infinite bars, are examined. 

The mixed problems for a half-plane welded to a single Melan bar of constant 
section have been examined in [I - 31, where there are references to even ear- 
lier publications, Half-planes reinforced by a periodic system of bars have been 

investigated in [4, 51. The first f~damental problem for a rectangle, one of 
whose sides is reinforced by an inflexible bar (the influence of the tangential 

contact stresses on the strain of the bar is also not taken account) is considered 
in [?I], and a Melan bar in c]. 

1. Let elastic Melan bar of constant section S, not inflexible, be welded to an elas- 
tic plate - m < x < i~7, -1 < Y < f of thickness h at the sections 0 <.z < - LX, 

Y = i 1 , Longitudinal forces T are applied to the bar endfaces 5 = 0, Y = + 1 tan- 

gential forces rl (z) act on the free surface of the bar. It is required to determine the 

stresses in the plate which decay as CL - - 00. 
The boundary conditions for the plate in this problem are 

17 (z) z h-lSE,c% / dZ2 + XXV = - FQ (X) (0 < z < 00, Y = -1) (1.1) 

TXU =o f- CS <x <o, Y = --I), SE&/ dz = T (5 = 0, (1.2) 

Y= - 1) 

tx!J =v=o (-~<x<C0,y=O) a,=0 (-w<z4-, (1.3) 

Y= - i) 

where E, is the elastic modulus of the bar. The solution is expressed by the formulas 

71 (P) = P 1s (P) - P @)I. 5 (P) = 6’ (P) -i- P’ (P) 

The conrour f, here lies in the strip 0 < Rep < 6, the prime denotes the derivative 
with respect to Y, and by virtue of (1.3) (Y and E are the elastic constantsofthe plate) 

p (p) = 4E-’ cos p cos py, F (p) = 2E-’ (1 _1- Y) p (y Cos p sin py - sin p ~0s py) 

It follows from conditions (1.1) and (1.2) 

r+ (F) = - A (P) P2iz’, (P), ri’ (PI + r- (11) = - A (P) P’.~r (rf 
co fm (1.5) 

Tt+ (1’) == 
c Z,?, ixr - if e-“” &, Yj+- (p) ~-= + - 

s 
q (x) eep” rE.s 

h 0 
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N, (PI = sin 2~ + 2~~ Nz (p) = 2aP GO.9 p + Nl (p), a = BE&E-lh-fi 

The zeros of the functions iVz (p) and N, (p) are denoted, respectively, by aC and bl, 
for Rep & 0, Im p > 0. Let us consider that a-k = - uk and b+ = - bk. There are 
evidently no real and imaginary zeros except a0 = 0 and b, = 0 among the aR and bk 
for large k 

uk = kn + io (ln k), bk = kn + iO (1) (1.6) 

E~minating the function A (p) in (I. 5)* we obtain the Wiener-Hopf equation [9] 

r+ (P) = A- (PI [r+ (PI + T (PII, K (PI = NI (P) Nz-I- (PI 

Its solution is sought by the Gakhov formulas [lo], as in [S], and it is (p = tl h $3) 

---<arg(iip)<n (1.7) 
-_im 

00 

zo+ (],) __ a-‘/z (1 + p)-% cxp 
f s 

+ In Ia (1 z-;K w 41 

0 

ylo- (p} = * 
<a+ (- Pf 

ice 
zo+ ($9 

Zf (i/3) = 2xi 
q+ (iPI q+ (if ~ - - 
170- ($9 1 dt + K ($3) - 

Tjo- (‘) t - i:i 2 q*(ii?)+ ho+ (iP) 

The qua~ti~ B is found from the bar equilibrium condition 

Tj+ (0) + 27-r = 2+ f$) Ia=* 

It determines completely the intensity of the tangential stresses 

‘G,~ (s, - if = B (xaz)+~ + 0 (x1/s) 

which POW without limit as x --t + 0 , In particular, if q (s) = 0, then 

B = m-l (1 + 1/&'2 (1.8) 

2. Now, let us remove a rectangular plate - I, < x < l,, - 1 < Y < 1 (11, I, > 0) 

from the strip. Let the previous conditions (1, l)-(1.3) remain on its longitudinal edges 
by retaining T and setting (1 (5) = 0 for simplicity. Let us assign normal stresses (dis- 
placements) and tangential displacements (stresses) which are symmetric in y ro the 

plate endfaces, and let us apply identical longitudinal force T, to the right ends of the 
bar : TXY (- 4, Y) = fl (Y), 24 (-- 4, Y) = bnl (!/) (2.1) 

sx (k !I) 2 !z (Y), 2‘ (f2, !I) -- ,-2(y), SRO g j --z Tz 
i/=-1, s=iz 

Let us seek the solution in rhe form of series 
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Here u* (I, Y) and c* (x, Y) are inhomogeneous displacements (1.4) in which the func- 
tion A (P) is expressed by (1.5), (1.7) and (1.8) z&(x, y) and zxk’ (5, y) is a system of 
piecewise-homogeneous solutions of the problem (1.1) - (1.3) for /I (z) = 0, T = 0 

u” (z, y) = ‘4” $ - EoS (1 $‘/zn)“’ ’ TO+ (p) x (p) ep’dp 
kih’h I 

- 
I, 

P”‘Vl (p) t &I (2.3) 

v”(s, y) = - A0 
VY /?os (1 c l/fn)'!Z ' 
e + 

z,,+ (p) 5 (p) epx dp 
ZxiRh I p”J1 (I)) 

I, 

The elements of this system are constructed in the ordinary way [8]. In order to con- 

firm whether they satisfy conditions (1.1) - (1.3) it is sufficient to replace the contour 
integrals by residue series in the zeros of the functions LVl (p) and A’, (P) according to 
the Cauchy theorem. 

Let us determine the coefficients Ak and Bk. Using the Schiff orthogonality re- 

lationship [ll], (pkl = a&, pkz = b,) 
0 

s 
[E' (Pi,) P' (P,,) + &' (P,,,) P' (ph.,)1 dY = 0 (/'~s2 i P,,? 

-1 

we expand the given functions in series in the homogeneous solutions 

(Y) = r, [CkX (Uk) + FkX (Zk)l + Cl), (2.4) 
k=l k=l 

0 

fil' @,)] E' @k) + fl (!d P’ @,)) d:! 
-1 

0 

d, = N-’ (bk) s {.h (4 [P (b,) -- 8 (bk)] - & gz’ (Y) e (b,) 
-1 

4SEo co9 b, 

vEhN (bJ 

0 

d,, == v-l (Eh + SE&’ fz (y) dy + S&TX 

0 

2E 
N (P) = -jq- s E’ (P) P'(P) dY 

-1 

The coefficients cO and B, do not influence the deformation of the plate. 
Let us expand the functions U/C (- L,, y), u* (- 11, Y) and vk (&, y), v* (1,, y) in resi- 
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due series in the zeros of the functions N1 (P) and Nz (P) , respectively, i.e. in series 
of the type 

zlk (12, y) = + (Ak - iBJ 
1 

ebk’2g (b,) + -i VT1 (bk, bn) ebnZ25 (b,) + 

TX=-1 1 

1’1 (bk, gn) e Fn125 (T&) + + (Ak + iElk)]} {eQ’s p,, + 

-cc 

2 [ Tl (Jk, bn) ebJZ 5 (b,) + T1 (b;(, b,) e’nnl’P (FJ I 
n=--1 I 

T, (s, P) = SNI (4 w (P) [P (P - 4 TO+ (4 Na* (P)I-‘9 k > 0, 

where the asterisk denotes the derivative with respect to p. Let us substitute these expan- 
sions into (2.2) and then let us invert the order of summation with respect to k and TZ, 
in the double series in the left sides of conditions (2.1) for u and v. Let us substitute 
the series (2.4) instead of gr (Y) and & (Y) in the right sides of these same conditions 
(2.1). Equating factors in y, we find 

-4, = - (YT + Ehd,) (vEh + E&-l (2.5) 

Using the evenness relationship x (- P) = - x (P), 5 (- p) = 5 @), equating factors 

in the functions x (a,), x (ah.), 5 (bk), 5 (bk) and introducing the unknowns 

x, - iYk mm= (‘lk - iB,) exp (Z2bk) for k >0 (2.6) 

X, -- iY, = (Ah- - iB,) exp (- 212~) for k < 0 

we obtain an infinite system of algebraic equations with a bilateral determinant 

xXk + i’ ix, Re [% &) + ‘P, (‘,)I f ‘n Lrn [v, @+a$, (rk)l) =- Regk (2. 7) 
n= --35 

00 

“l, -+ 2’ {‘,, Re [(P, (tk) - ‘P, (fk) 1 - x,, Irn [v, ttk) - ‘P, (“p) 1) -= h qk 
*k--30 

nio, k-+1, +2,. .., x-signk, tk = 

i 

b k’ k>O 

‘ky k <.O 

9, @k) = T, (b,, - ak) exP (llak - #J (n > 0) 

‘p, (bk) =-; T, !b,, - bk) exp (- l,bk - l,b,) (n > 0) 

‘p,, (Ok) = T, (a,, - ‘k) exp (& + ‘la,) (n < 0) 

9, (bk) = T, (on, - b,) exp (Iran - l,bk) (n < 0) 

Tz (s, p) = - 
sN1 (s) zo+ (p) 

P (P -s) TO+(S) Nl* (11) 

sNz (s) qo- (p) 

3; (" ') = -- I>(]' - s)qo- (s) Nz* Q) 

sNz (s) TO+(~) 

T4 (" ') = ~(1) -- s)q,,-(s)NI* (p) ’ +‘rr = - 
qo- (- bk) (1 + +z)'!~ 

bk2ebkz2N2* (bk) 
X 
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Aon T 
2 + h - C_k (k<O) 

Because of the asymptotic estimates (1.6), the elements of the system (2.7) outside 
the diagonal decrease exponentially in the numbers of rows and columns. Therefore, the 

double series composed of them converges absolutely, and the system is normal accord- 
ing to Poincare/-Koch. Relying on the theory of normal systems (121, it can be shown 
that the normal solution Xk, Yk exists, is unique, is determined by Cramer’s rule and 
is estimated for large ,+ by the asymptotic formulas (v < 2) 

X, =m - Rc $)k t_ 0 [ ky esp (- h-d,)], Y,; III1 qk + 0 [ ky VXll (- hXl,)] (/L. > 0) (2.8) 

A-k = He qk + 0 [kYeap (/ml,)], l-k - - Im ql, + 0 I/i” csp (lid,) 1 (ik < 0) 

It is expedient to keep m unknowns Xii, Y,, with negative and E (ml,l,-1) positive 
numbers k in the system (2.7) in order to calculate the first unknowns x,,, yk. (E tz) 

denotes the integer part of I here). Then the rate of convergence of the solution Xhm, 
Ykm of the truncated system to the exact solution is estimated by the formula 

111;x { 1 s, - Ykm 1, 1 I’, - Iy 1) 0 { 1 \linL 1 ,2‘y=~l} 
(2.9) 

Elementary estimates based on (2.2), (2.3), (2.6) and (2.9) show that the greatest rela- 
tive error 6 in the solution (2.2) occurs at the endface of the rectangle x = - 1, and 

is determined by the formula 6 - exp (- m&,). Therefore, for 6 = 0,Ol and for 1, > 

‘/2, say, it is sufficient to solve the system (2.7) truncated to m = 3 and to use the 
- 

asymptotic (2.8) for the remaining unknown Xk, Y,;. 

If the functions fs (y) and gS (y) are twice continuously differentiable and satisfy con- 
sistency conditions with the magnitude of the longitudinal forces T, and the boundary 

conditions (1.1) - (1.3) at the corners of the plate, then the series (2.2) converges uni- 

formly to the series (2.4) as 2 - - l,, 1, . 
The method elucidated is broader and more effective than the method used in [8] in 

a simpler problem for a rectangle. The structure of the system (2.7) is improved con- 

siderably here; the possibility of expanding the arbitrary endface functions in the series 
(2.4) permits solution of the problem for rectangle with several kinds of boundary con- 
ditions by means of separation, i.e. with several bars on the lateral surface and with in- 

homogeneous conditions at the endfaces. The efficiency of the method has been verified 

also by computations on an electronic computer [ 131. 
The nature of the singularities originating at the points of separation of the kinds of 

boundary conditions is evidently determined completely in all the problems of which we 
speak by the singularities in the individual elements of the system of piecewise-homo- 
geneous solutions (2.3). Following the corresponding discussion from [ 141, it is easy to 

establish that as z - + 0 

ALJk = 
b,.v, (Q) 

(k > f)), .IJ,; 
nkLyz (0,;) 

T”+ (b,) ‘lo- (tr,;) 
(k << I )) 

tit us consider some particular cases of the endface conditions (2.1). 
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For fJ. (y) = g, (y) = 0 and T, = 0 the solution (2.2), (2.5), (2.7) determines the 

strain on a strip - 1 < y g 1 reinforced by a periodic system of bars. Longitudinal 

forces + I’, whose directions change from bar to bar, and act to one side are applied to 
the ends of each bar, Under these same conditions it is possible to put 1, = 00 or 1, =o=. 

In the first case A k = 0 for k < 0. Of the four blocks in the system (2.7) one remains 
with the element numbers k > 0, n > 0. The solution determines the stresses in a strip 
on which a force 4T is transmitted through two bars of length 21, which are symmet- 

ric relative to the r-axis. The second case is the problem of a strip reinforced symmet- 

rically by two semi-infinite bars. The spacing between the ends of the bars welded to 

one edge is al,, and the forces 3’ applied are directed to opposite sides. For k > 0 in 
the solution (2.2) A h- = 0. The elements of three blocks vanish in the matrix of the sys- 
tem (2.7) because of the exponentials, and just a block with the element numbers k < 0, 
n < 0 remains. 
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